Investigating the ABCs of Drosophila:
Aging, Behavior, and (mi)Crobes
Research Focus
Over a century of research on the fruit fly has resulted in profound discoveries in basic cellular processes, and has enabled the use of Drosophila as a model for human disease and drug discovery. Our laboratory uses diverse tools in chemistry and biology to dissect genetic pathways and neural circuitry involved in aging, behavior, and disease. We are currently involved in several projects including:
Fly-associated microbes can promote host longevity and development. Using the powerful genetic tools available for manipulating Drosophila, we are investigating the molecular mechanisms required for maintaining relationships between the fly microbiome, nutrition, and host physiology and health.
We have identified genes that modify lifespan in response to environmental cues, including temperature and nutrient availability. The mechanistic analysis of these genetic pathways includes application of large-scale methods (metabolomics, lipidomics) and gene expression studies on Drosophila mutants. We are also investigating small molecule-modulators of mitochondrial function in cell culture models of aging.
The analysis of hunger, satiety, and the timing of meals has been neglected, despite the possible role played by prandial habits in obesity, hypercholesterolemia, and diabetes. We are 1) developing simple tools for measuring short- and long-term food consumption in flies and 2) characterizing genetic and neural manipulations that affect feeding behavior. This work will provide a better understanding of the central mechanisms that underlie appetite and feeding behavior at the genetic and neuronal levels.
Eating and sleeping are fundamental behaviors that are critical to survival. Increasing evidence suggests that the processes regulating these behaviors are linked. We have developed the Activity Recording CAFE (ARC) for assessing both food intake and sleep in individually housed adult flies (Murphy et al. (2017) Nat. Protoc.). With the ARC, we are dissecting the sleep-feeding axis in Drosophila and have identified mechanisms that regulate postprandial sleep (Murphy et al. (2016) eLife).
The ARC provides a simple, inexpensive, and customizable platform for studying animal behavior using webcams and 3-D printed chambers. For questions on adapting the ARC for your studies, please don’t hesitate to contact us or refer to the ARC GitHub repository or the FAQ page.
The Ja Lab Team
Current members
![]() |
William Ja |
![]() |
Binbin Wu |
![]() |
Scarlet Jinhong Park |
![]() |
Gloria I. Morales Quintana |
![]() |
Dane Wiren |
![]() |
Manas Aavula |
![]() |
Karl Thayer |
![]() |
Eva Reyblat |
Mini-Ja Famous quotes: "Pick me up! Show me your western!" "Why are you still here? Go home!" |
Collaborators
![]() |
Ken Dawson-Scully |
Past Members
Yaa Abu
Suzanne Al-Said
Diane Altidor
Justin Archer
Paige Beckey
Kim Bruce (Assistant Professor, University of Colorado)
Ilaria Drago
Margaux Ehrlich
Maya El-Sharif
Max Fisch
Ashley Fravel
Heather Gilchrest
Adwait Godbole
Stephanie
Heung
Sany Hoxha
Erin Keebaugh
Laura Kuperman
Alex McBee
Keith Murphy
Bilal Mutluguler
Angel Feliz Norberto
Anita Nwiloh
Alina Soto Obando
Shivani Patel
Angela Phillips (Ph.D. student, MIT)
Stefan Ragnarsson
Cathy Ray
Tania Rodriguez
Sarah
Rollins
Diana Singkornrat
Ashley Stanisclasse
Chenchen Su
Alianis Tirado
Nicolas Tran
Cathy Trivigno (Instructor, Florida Atlantic University)
Li-Jie Wang
Chris Warner
Jennifer Weissbach
Daniel Whu
Leslie Williams
Qi Wu
Ryuichi Yamada (Visiting Fellow, University of Tokyo)
Postdoctoral candidates interested in joining our laboratory should send a cover letter, CV, and contact information for references to Ms. Alex James (ajames@scripps.edu).
Prospective graduate students should apply directly to the Skaggs Graduate School.
Current Scripps graduate students should contact Prof. Ja directly to discuss
rotation projects.
William W. Ja, Ph.D.
Associate ProfessorMs. Alex James
Administrative Assistant